TEXAS ACADEMY OF MATHEMATICS AND SCIENCE
Computer Engineering Pathway Course Descriptions

Students at the Texas Academy of Mathematics and Science must pass all courses taken. The course descriptions have been taken from the University of North Texas catalog:

CHEM 1410 General Chemistry for Science Majors
Fundamental concepts, states of matter, periodic table, structure and bonding, stoichiometry, oxidation and reduction, solutions, and compounds of representative elements.

CHEM 1413 Honors General Chemistry
Fundamental concepts, states of matter, periodic table, structure, solutions and compounds of representative elements.

CHEM 1420 General Chemistry for Science Majors
Thermodynamics, reaction rates, equilibrium, electrochemistry, organic chemistry, polymers, radioactivity and nuclear reactions.

CHEM 1423 Honors General Chemistry
Thermodynamics, reaction rates, equilibrium, electrochemistry and nuclear chemistry. This course is strongly advised and may be required for students planning to engage in undergraduate chemical research.

CHEM 1430 Laboratory Sequence for General Chemistry
Laboratory techniques, weighing, errors and significant figures, identification and purification of substances, and elementary quantitative analysis.

CHEM 1440 Laboratory Sequence for General Chemistry
Quantitative, gravimetric and volumetric analyses; coordination compounds.

CSCE 1030 Computer Science I
Introduction to Computer Science and Engineering, problem solving techniques, algorithmic processes, software design and development.

CSCE 1040 Computer Science II
Continuation of CSCE 1030. Software Design, structured programming, object-oriented design and programming.

CSCE 2100 Foundations of Computing
Introduces students to data models and formalisms used in computer science. Data models such as sets, relations, graphs, and trees will be discussed along with their underlying theory. Formalisms such as propositional logic, Boolean logic, combinatorics, and automata will also be presented within the context of computer science. By the end of the foundation courses, each student will have a solid foundation in conceptual and formal models and levels of abstraction as used in the field of computer science, as well as greater proficiency in software development.

CSCE 2110 Foundations of Data Structures
Introduces students to the basics of more organized software developments. This include the basics of using Integrated Development Environments (IDE), proper debugging and testing strategies, and the use of code repositories. Students will be expected to work in teams to develop programming solutions in C or C++. Additionally, the effective use of regular expressions to parse text and the use of hash tables to store data will be covered. By the end of the foundation courses, each student will have a solid foundation in conceptual and formal models and levels of abstraction as used in the field of computer science, as well as greater proficiency in software development.
ENGL 1315 *Writing about Literature I*
Writing as a means of critical thinking using readings from poetry and drama as sources for essay topics. Emphasis on the process of perfecting the essay through the writing of several drafts.

ENGL 1325 *Writing about Literature II*
Study of relationship between writing and research with research topics drawn from readings from prose fiction. Emphasis on the process of perfecting the essay through the writing of several drafts.

ENGL 2331 *World Literature*
Comparative and critical reading skills from a global perspective, tracing significant literary themes, texts, movements and genres across a wide range of world literatures and cultures from ancient times to the present day.

HIST 2610 *United States History to 1865*
From colonial origins through the Civil War.

HIST 2620 *United States History since 1865*
From the Civil War to the present.

MATH 1650 *Pre-Calculus*
Preparatory course for calculus: trigonometric functions, their graphs and applications; sequences and series; exponential and logarithmic functions and their graphs; graphs of polynomial and rational functions; general discussion of functions and their properties.

MATH 1710 *Calculus I*
Limits and continuity, derivatives and integrals; differentiation and integration of polynomial, rational, trigonometric, and algebraic functions; applications, including slope, velocity, extrema, area, volume and work.

MATH 1720 *Calculus II*
Differentiation and integration of exponential, logarithmic and transcendental functions; integration techniques; indeterminate forms; improper integrals; area and arc length in polar coordinates; infinite series; power series; Taylor’s theorem.

MATH 2700 *Linear Algebra and Vector Calculus*
Vector spaces over the real number field; applications to systems of linear equations and analytic geometry in En, linear transformations, matrices, determinants and eigenvalues.

MATH 2730 *Multivariable Calculus*
Vectors and analytic geometry in 3-space; partial and directional derivatives; extrema; double and triple integrals and applications; cylindrical and spherical coordinates.

PHYS 1710 *Mechanics*

PHYS 1730 *Laboratory in Mechanics*
Laboratory to accompany PHYS 1710.

PHYS 2220 *Electricity and Magnetism*
Electric fields, dc and ac circuits, magnetic fields and magnetic induction. Electric and magnetic properties of matter.
PHYS 2240 *Laboratory in Wave Motion, Electricity, Magnetism, and Optics*
Laboratory to accompany PHYS 2220.

PSCI 2305 *US Political Behavior and Policy*
Explores the connection between the will of the people and the policies implemented by
government by focusing on individual political values and attitudes, the mechanisms that
connect individual beliefs to government action (parties, interest groups, the media, and
elections), and the outcomes of government policy.

PSCI 2306 *US and Texas Constitutions and Institutions*
An introduction to the institutions of government, with particular emphasis on the U.S. and
Texas Constitutions. Focus on the structure and powers of the three branches of government
(both national and Texas); the division of power between those branches (separation of powers);
the division of power between the national and state governments (federalism); and issues
related to civil rights and civil liberties. Satisfies the legislative requirement for a course
emphasizing the Texas constitution.

Updated: July 2020